Automorphism groups are intrincate conjugacy invariants for subshifts, which can reveal important features of the dynamical structure of a shift action. One important case is the study of automorphism groups when the underlying subshift has a very rigid structure, e.g. substitutive subshifts or aperiodic constructions with large-scale self-similarity, such as the Robinson shift. In this work we study the automorphism group of bijective substitutive subshifts, and a potential generalization in the form of the group of extended symmetries, studied previously by Michael Baake, John Roberts and Reem Yassawi (arXiv:1611.05756); these symmetries, by allowing for shearing and other deformations of the underlying group, may reveal additional information of a geometric nature about the structure of these subshifts.