Averaging principle for two dimensional stochastic Navier-Stokes equations


الملخص بالإنكليزية

The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time discretization is used for the proof of the slow component strong convergence to the solution of the corresponding averaged equation under some suitable conditions. Meanwhile, some powerful techniques are used to overcome the difficulties caused by the nonlinear term and to release the regularity of the initial value.

تحميل البحث