Perturbation-based FEC-assisted Iterative Nonlinearity Compensation for WDM Systems


الملخص بالإنكليزية

A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedback from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation. A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedback from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation.

تحميل البحث