We study the three-body anti-triplet ${bf B_c}to {bf B_n}MM$ decays with the $SU(3)$ flavor ($SU(3)_f$) symmetry, where ${bf B_c}$ denotes the charmed baryon anti-triplet of $(Xi_c^0,-Xi_c^+,Lambda_c^+)$, and ${bf B_n}$ and $M(M)$ represent baryon and meson octets, respectively. By considering only the S-wave $MM$-pair contributions without resonance effects, the decays of ${bf B_c}to {bf B_n}MM$ can be decomposed into irreducible forms with 11 parameters under $SU(3)_f$, which are fitted by the 14 existing data, resulting in a reasonable value of $chi^2/d.o.f=2.8$ for the fit. Consequently, we find that the triangle sum rule of ${cal A}(Lambda_c^+to nbar K^0 pi^+)-{cal A}(Lambda_c^+to pK^- pi^+)-sqrt 2 {cal A}(Lambda_c^+to pbar K^0 pi^0)=0$ given by the isospin symmetry holds under $SU(3)_f$, where ${cal A}$ stands for the decay amplitude. In addition, we predict that ${cal B}(Lambda_c^+to n pi^{+} bar{K}^{0})=(0.9pm 0.8)times 10^{-2}$, which is $3-4$ times smaller than the BESIII observation, indicating the existence of the resonant states. For the to-be-observed ${bf B_c}to {bf B_n}MM$ decays, we compute the branching fractions with the $SU(3)_f$ amplitudes to be compared to the BESIII and LHCb measurements in the future.