Finite $p$-groups of birational automorphisms and characterizations of rational varieties


الملخص بالإنكليزية

We study finite $p$-subgroups of birational automorphism groups. By virtue of boundedness theorem of Fano varieties, we prove that there exists a constant $R(n)$ such that a rationally connected variety of dimension $n$ over an algebraically closed field is rational if its birational automorphism group contains a $p$-subgroups of maximal rank for $p > R(n)$. Some related applications on Jordan property are discussed.

تحميل البحث