Nodeless bulk superconductivity in the time-reversal symmetry breaking Bi/Ni bilayer system


الملخص بالإنكليزية

Epitaxial bilayer films of Bi(110) and Ni host a time-reversal symmetry (TRS) breaking superconducting order with an unexpectedly high transition temperature $T_c = 4.1$ K. Using time-domain THz spectroscopy, we measure the low energy electrodynamic response of a Bi/Ni bilayer thin film from $0.2$ THz to $2$ THz as a function of temperature and magnetic field. We analyze the data in the context of a BCS-like superconductor with a finite normal-state scattering rate. In zero magnetic field, all states in the film become fully gapped, providing important constraints into possible pairing symmetries. Our data appears to rule out the odd-frequency pairing that is natural for many ferromagnetic-superconductor interfaces. By analyzing the magnetic field-dependent response in terms of a pair-breaking parameter, we determine that superconductivity develops over the entire bilayer sample which may point to the $p$-wave like nature of unconventional superconductivity.

تحميل البحث