Long Time Behavior of First Order Mean Field Games on Euclidean Space


الملخص بالإنكليزية

The aim of this paper is to study the long time behavior of solutions to deterministic mean field games systems on Euclidean space. This problem was addressed on the torus ${mathbb T}^n$ in [P. Cardaliaguet, {it Long time average of first order mean field games and weak KAM theory}, Dyn. Games Appl. 3 (2013), 473-488], where solutions are shown to converge to the solution of a certain ergodic mean field games system on ${mathbb T}^n$. By adapting the approach in [A. Fathi, E. Maderna, {it Weak KAM theorem on non compact manifolds}, NoDEA Nonlinear Differential Equations Appl. 14 (2007), 1-27], we identify structural conditions on the Lagrangian, under which the corresponding ergodic system can be solved in $mathbb{R}^{n}$. Then we show that time dependent solutions converge to the solution of such a stationary system on all compact subsets of the whole space.

تحميل البحث