We present a design for a superconducting, on-chip circulator composed of dynamically modulated transfer switches and delays. Design goals are set for the multiplexed readout of superconducting qubits. Simulations of the device show that it allows for low-loss circulation (insertion loss < 0.35 dB and isolation >20 dB) over an instantaneous bandwidth of 2.3 GHz. As the device is estimated to be linear for input powers up to -65 dBm, this design improves on the bandwidth and power-handling of previous superconducting circulators by over a factor of 50, making it ideal for integration with broadband quantum limited amplifiers.