We investigate the violation of the first Hunds rule in 4$d$ and 5$d$ transition metal oxides that form solids of dimers. Bonding states within these dimers reduce the magnetization of such materials. We parametrize the dimer formation with realistic hopping parameters and find not only regimes, where the system behaves as a Fermi liquid or as a Peierls insulator, but also strongly correlated regions due to Hunds coupling and its competition with the dimer formation. The electronic structure is investigated using the cluster dynamical mean-field theory for a dimer in the two-plane Bethe lattice with two orbitals per site and $3/8$-filling, that is three electrons per dimer. It reveals dimer-antiferromagnetic order of a high-spin (double exchange) state and a low-spin (molecular orbital) state. At the crossover region we observe the suppression of long-range magnetic order, fluctuation enhancement and renormalization of electron masses. At certain interaction strengths the system becomes an incoherent antiferromagnetic metal with well defined local moments.