Quasi-graphs, zero entropy and measures with discrete spectrum


الملخص بالإنكليزية

In this paper, we study dynamics of maps on quasi-graphs characterizing their invariant measures. In particular, we prove that every invariant measure of quasi-graph map with zero topological entropy has discrete spectrum. Additionally, we obtain an analog of Llibre-Misiurewiczs result relating positive topological entropy with existence of topological horseshoes. We also study dynamics on dendrites and show that if a continuous map on a dendrite, whose set of all endpoints is closed and has only finitely many accumulation points, has zero topological entropy, then every invariant measure supported on an orbit closure has discrete spectrum.

تحميل البحث