Superadditivity of convex roof coherence measures


الملخص بالإنكليزية

In this paper, we examine the superadditivity of convex roof coherence measures. We put forward a theorem on the superadditivity of convex roof coherence measures, which provides a sufficient condition to identify the convex roof coherence measures fulfilling the superadditivity. By applying the theorem to each of the known convex roof coherence measures, we prove that the coherence of formation and the coherence concurrence are superadditive, while the geometric measure of coherence, the convex roof coherence measure based on linear entropy, the convex roof coherence measure based on fidelity, and convex roof coherence measure based on $frac{1}{2}$-entropy are non-superadditive.

تحميل البحث