A splitting of the virtual class for genus one stable maps


الملخص بالإنكليزية

Moduli spaces of stable maps to a smooth projective variety typically have several components. We express the virtual class of the moduli space of genus one stable maps to a smooth projective variety as a sum of virtual classes of the components. The key ingredient is a generalised functoriality result for virtual classes. We show that the natural maps from ghost components of the genus one moduli space to moduli spaces of genus zero stable maps satisfy the strong push forward property. As a consequence, we give a cycle-level formula which relates standard and reduced genus one Gromov--Witten invariants of a smooth projective Calabi--Yau theefold.

تحميل البحث