Extracting distribution parameters from multiple uncertain observations with selection biases


الملخص بالإنكليزية

We derive a Bayesian framework for incorporating selection effects into population analyses. We allow for both measurement uncertainty in individual measurements and, crucially, for selection biases on the population of measurements, and show how to extract the parameters of the underlying distribution based on a set of observations sampled from this distribution. We illustrate the performance of this framework with an example from gravitational-wave astrophysics, demonstrating that the mass ratio distribution of merging compact-object binaries can be extracted from Malmquist-biased observations with substantial measurement uncertainty.

تحميل البحث