Jet Observable for Photons from High-Intensity Laser-Plasma Interactions


الملخص بالإنكليزية

The goals of discovering quantum radiation dynamics in high-intensity laser-plasma interactions and engineering new laser-driven high-energy particle sources both require accurate and robust predictions. Experiments rely on particle-in-cell simulations to predict and interpret outcomes, but unknowns in modeling the interaction limit the simulations to qualitative predictions, too uncertain to test the quantum theory. To establish a basis for quantitative prediction, we introduce a `jet observable that parameterizes the emitted photon distribution and quantifies a highly directional flux of high-energy photon emission. Jets are identified by the observable under a variety of physical conditions and shown to be most prominent when the laser pulse forms a wavelength-scale channel through the target. The highest energy photons are generally emitted in the direction of the jet. The observable is compatible with characteristics of photon emission from quantum theory. This work offers quantitative guidance for the design of experiments and detectors, offering a foundation to use photon emission to interpret dynamics during high-intensity laser-plasma experiments and validate quantum radiation theory in strong fields.

تحميل البحث