We construct several examples of compactifications of Einstein metrics. We show that the Eguchi--Hanson instanton admits a projective compactification which is non--metric, and that a metric cone over any (pseudo)--Riemannian manifolds admits a metric projective compactification. We construct a para--$c$--projective compactification of neutral signature Einstein metrics canonically defined on certain rank--$n$ affine bundles $M$ over $n$-dimensional manifolds endowed with projective structures.