Arbitrary state preparation of a mechanical resonator via controlled pulse shaping and projective measurement in a qubit-resonator interaction


الملخص بالإنكليزية

We introduce a protocol capable of generating a general measurement operator for a mechanical resonator. The technique requires a qubit-resonator interaction and uses a coherent pulse to drive qubit transitions. This is followed by projective measurement of the qubits energy, constraining the resonator in a state that depends on the pulse shape. The freedom to choose a pulse shape for the coherent drive enables an arbitrary position-basis measurement operator. Using this measurement operator, we outline a two pulse protocol that probabilistically generates a pure mechanical state with a desired wavefunction, with near unit fidelity for realizable parameters.

تحميل البحث