Internal nanostructure diagnosis with hyperbolic phonon polaritons in hexagonal boron nitride


الملخص بالإنكليزية

Imaging materials and inner structures with resolution below the diffraction limit has become of fundamental importance in recent years for a wide variety of applications. In this work, we report sub-diffractive internal structure diagnosis of hexagonal boron nitride by exciting and imaging hyperbolic phonon polaritons. Based on their unique propagation properties, we are able to accurately locate defects in the crystal interior with nanometer resolution. The precise location, size and geometry of the concealed defects is reconstructed by analyzing the polariton wavelength, reflection coefficient and their dispersion. We have also studied the evolution of polariton reflection, transmission and scattering as a function of defect size and photon frequency. The nondestructive high-precision polaritonic structure diagnosis technique introduced here can be also applied to other hyperbolic or waveguide systems, and may be deployed in the next-generation bio-medical imaging, sensing and fine structure analysis.

تحميل البحث