An Xcity Optimization Approach to Designing Proving Grounds for Connected and Autonomous Vehicles


الملخص بالإنكليزية

Proving ground, or on-track testing has been an essential part of testing and validation process for connected and autonomous vehicles (CAV). Several world-class CAV proving grounds, such as Mcity at the University of Michigan and The Castle of Waymo, have already been built, and many more are currently under construction. In this paper, we propose the first optimization approach to CAV proving ground designing and refer to any such CAV-centric design problem as Xcity to emphasize the enormous investment, the multi-dimensional spatial consideration, and the immense construction effort emerging globally. Inspired by the recent progress on traffic encounter clustering, we further define road assets as fundamental building blocks and formulate the whole design process into nonlinear optimization problems. We have shown that such framework can be utilized to adaptively generate CAV proving ground designs with optimized capability and flexibility and can further be extended to evaluate an existing Xcity design.

تحميل البحث