Dynamic Laplace: Efficient Centrality Measure for Weighted or Unweighted Evolving Networks


الملخص بالإنكليزية

With its origin in sociology, Social Network Analysis (SNA), quickly emerged and spread to other areas of research, including anthropology, biology, information science, organizational studies, political science, and computer science. Being its objective the investigation of social structures through the use of networks and graph theory, Social Network Analysis is, nowadays, an important research area in several domains. Social Network Analysis cope with different problems namely network metrics, models, visualization and information spreading, each one with several approaches, methods and algorithms. One of the critical areas of Social Network Analysis involves the calculation of different centrality measures (i.e.: the most important vertices within a graph). Today, the challenge is how to do this fast and efficiently, as many increasingly larger datasets are available. Recently, the need to apply such centrality algorithms to non static networks (i.e.: networks that evolve over time) is also a new challenge. Incremental and dynam

تحميل البحث