Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 quasi-condensates


الملخص بالإنكليزية

Quantum systems of many interacting particles at low temperatures generally organize themselves into ordered phases of matter, whose nature and symmetries are captured by an order parameter. In the simplest cases, this order parameter is spatially uniform. For example, a system of localized spins with ferromagnetic interactions align themselves to a common direction and build up a macroscopic magnetization on large distances. However, non-uniform situations also exist in nature, for instance in antiferromagnetism where the magnetization alternates in space. The situation becomes even richer when the spin-carrying particles are mobile, for instance in the so-called stripe phases emerging for itinerant electrons in strongly-correlated materials. Understanding such inhomogeneously ordered states is of central importance in many-body physics. In this work, we study experimentally the magnetic ordering of itinerant spin-1 bosons in inhomegeneous spin domains at nano-Kelvin temperatures. We demonstrate that spin domains form spontaneously after a phase separation transition, textit{i.e.} in the absence of external magnetic force, purely because of the antiferromagnetic interactions between the atoms. Furthermore, we explore how the equilibrium domain configuration emerges from an initial state prepared far-from-equilibrium.

تحميل البحث