Data analytics and data science play a significant role in nowadays society. In the context of Smart Grids (SG), the collection of vast amounts of data has seen the emergence of a plethora of data analysis approaches. In this paper, we conduct a Systematic Mapping Study (SMS) aimed at getting insights about different facets of SG data analysis: application sub-domains (e.g., power load control), aspects covered (e.g., forecasting), used techniques (e.g., clustering), tool-support, research methods (e.g., experiments/simulations), replicability/reproducibility of research. The final goal is to provide a view of the current status of research. Overall, we found that each sub-domain has its peculiarities in terms of techniques, approaches and research methodologies applied. Simulations and experiments play a crucial role in many areas. The replicability of studies is limited concerning the provided implemented algorithms, and to a lower extent due to the usage of private datasets.