The fact that nonlocality implies steering enables one to certify steerability by using a Bell inequality violation. Such a certification is device-independent (DI), i.e., one makes no assumption neither on the underlying state nor on the measurements. However, not all steerable states can violate a Bell inequality. Here, we systematically construct a collection of witnesses for steerable resources, defined by assemblages, in a measurement-device-independent (MDI) scenario. The inputs driving the measurement are replaced by a set of tomographically complete quantum states, and neither the detectors nor the underlying state is characterized. We show that all steerable assemblages can be detected by properly chosen witnesses. Furthermore, we introduce the first measure of steerability in an MDI scenario and show that such a measure is a standard one, i.e., a steering monotone, by proving that it is equivalent to the steering robustness.