Wavefunction for the Universe Circa the Beginning with Dynamically Determined Unique Initial Conditions


الملخص بالإنكليزية

In this paper I will first outline an effective field theory for cosmology (EFTC) that is based on the Standard Model coupled to General Relativity and improved with Weyl symmetry. There are no new physical degrees of freedom in this theory, but what is new is an enlargement of the domain of the existing physical fields and of spacetime via the larger symmetry, thus curing the geodesic incompleteness of the traditional theory. Invoking the softer behavior of an underlying theory of quantum gravity, I further argue that it is reasonable to ban higher curvature terms in the effective action, thus making this EFTC mathematically well behaved at gravitational singularities, as well as geodesically complete, thus able to make new physics predictions. Using this EFTC, I show some predictions of surprising behavior of the universe at singularities including a unique set of big-bang initial conditions that emerge from a dynamical attractor mechanism. I will illustrate this behavior with detailed formulas and plots of the classical solutions and the quantum wavefunction that are continuous across singularities for a cosmology that includes the past and future of the big bang. The solutions are given in the geodesically complete global mini-superspace that is similar to the extended spacetime of a black hole or extended Rindler spacetime. The analytic continuation of the quantum wavefunction across the horizons describes the passage through the singularities. This analytic continuation solves a long-standing problem of the singular (-1/r^2) potential in quantum mechanics that dates back to Von Neumann. The analytic properties of the wavefunction also reveal an infinite stack of universes sewn together at the horizons of the geodesically complete space. Finally a critique of recent controversial papers using the path integral approach in cosmology is given.

تحميل البحث