Application of the Iterated Weighted Least-Squares Fit to counting experiments


الملخص بالإنكليزية

Least-squares fits are an important tool in many data analysis applications. In this paper, we review theoretical results, which are relevant for their application to data from counting experiments. Using a simple example, we illustrate the well known fact that commonly used variants of the least-squares fit applied to Poisson-distributed data produce biased estimates. The bias can be overcome with an iterated weighted least-squares method, which produces results identical to the maximum-likelihood method. For linear models, the iterated weighted least-squares method converges faster than the equivalent maximum-likelihood method, and does not require problem-specific starting values, which may be a practical advantage. The equivalence of both methods also holds for binomially distributed data. We further show that the unbinned maximum-likelihood method can be derived as a limiting case of the iterated least-squares fit when the bin width goes to zero, which demonstrates a deep connection between the two methods.

تحميل البحث