The FUGIN CO survey with the Nobeyama 45-m Telescope revealed the 3D structure of a galactic shock wave in the tangential direction of the 4-kpc molecular arm. The shock front is located at G30.5+00.0+95 km/s on the up-stream (lower longitude) side of the star-forming complex W43 (G30.8-0.03), and composes a molecular bow shock (MBS) concave to W43, exhibiting an arc-shaped molecular ridge perpendicular to the galactic plane with width $sim 0^circ.1$ (10 pc) and vertical length $sim 1^circ (100 {rm pc})$. The MBS is coincident with the radio continuum bow of thermal origin, indicating association of ionized gas and similarity to a cometary bright-rimmed cloud. The up-stream edge of the bow is sharp with a growth width of $sim 0.5$ pc indicative of shock front property. The velocity width is $sim 10$ km/s, and the center velocity decreases by $sim 15$ kms from bottom to top of the bow. The total mass of molecular gas in MBS is estimated to be $sim 1.2times 10^6 <_odot$ and ionized gas $sim 2times 10^4 M_odot$. The vertical disk thickness increases step like at the MBS by $sim 2$ times from lower to upper longitude, which indicates hydraulic-jump in the gaseous disk. We argue that the MBS was formed by the galactic shock compression of an accelerated flow in the spiral-arm potential encountering the W43 molecular complex. A bow-shock theory can well reproduce the bow morphology. We argue that molecular bows are common in galactic shock waves not only in the Galaxy but also in galaxies, where MBS are associated with giant cometary HII regions. We also analyzed the HI data in the same region to obtain a map of HI optical depth and molecular fraction. We found a firm evidence of HI-to-H$_{2}$ transition in the galactic shock as revealed by a sharp molecular front at the MBS front.