As one fundamental property of light, the orbital angular momentum (OAM) of photon has elicited widespread interest. Here, we theoretically demonstrate that the OAM conversion of light without any spin state can occur in homogeneous and isotropic medium when a specially tailored locally linearly polarized (STLLP) beam is strongly focused by a high numerical aperture (NA) objective lens. Through a high NA objective lens, the STLLP beams can generate identical twin foci with tunable distance between them controlled by input state of polarization. Such process admits partial OAM conversion from linear state to conjugate OAM states, giving rise to helical phases with opposite directions for each focus of the longitudinal component in the focal field.