To model the interdependent couplings of multiple topics, we develop a set of rules for opinion updates of a group of agents. The rules are used to design or assign values to the elements of interdependent weighting matrices. The cooperative and anti-cooperative couplings are modeled in both the inverse-proportional and proportional feedbacks. The behaviors of cooperative opinion dynamics are analyzed using a null space property of state-dependent matrix-weighted Laplacian matrices and a Lyapunov candidate. Various consensus properties of state-dependent matrix-weighted Laplacian matrices are predicted according to the intra-agent network topology and inter-dependency topical coupling topologies.