Joint Channel-Estimation/Decoding with Frequency-Selective Channels and Few-Bit ADCs


الملخص بالإنكليزية

We propose a fast and near-optimal approach to joint channel-estimation, equalization, and decoding of coded single-carrier (SC) transmissions over frequency-selective channels with few-bit analog-to-digital converters (ADCs). Our approach leverages parametric bilinear generalized approximate message passing (PBiGAMP) to reduce the implementation complexity of joint channel estimation and (soft) symbol decoding to that of a few fast Fourier transforms (FFTs). Furthermore, it learns and exploits sparsity in the channel impulse response. Our work is motivated by millimeter-wave systems with bandwidths on the order of Gsamples/sec, where few-bit ADCs, SC transmissions, and fast processing all lead to significant reductions in power consumption and implementation cost. We numerically demonstrate our approach using signals and channels generated according to the IEEE 802.11ad wireless local area network (LAN) standard, in the case that the receiver uses analog beamforming and a single ADC.

تحميل البحث