Global existence for the 3-D semilinear damped wave equations in the scattering case


الملخص بالإنكليزية

We study the global existence of solutions to semilinear damped wave equations in the scattering case with derivative power-type nonlinearity on (1+3) dimensional nontrapping asymptotically Euclidean manifolds. The main idea is to exploit local energy estimate, together with local existence to convert the parameter $mu$ to small one.

تحميل البحث