Random band matrices in the delocalized phase, II: Generalized resolvent estimates


الملخص بالإنكليزية

This is the second part of a three part series abut delocalization for band matrices. In this paper, we consider a general class of $Ntimes N$ random band matrices $H=(H_{ij})$ whose entries are centered random variables, independent up to a symmetry constraint. We assume that the variances $mathbb E |H_{ij}|^2$ form a band matrix with typical band width $1ll Wll N$. We consider the generalized resolvent of $H$ defined as $G(Z):=(H - Z)^{-1}$, where $Z$ is a deterministic diagonal matrix such that $Z_{ij}=left(z 1_{1leq i leq W}+widetilde z 1_{ i > W} right) delta_{ij}$, with two distinct spectral parameters $zin mathbb C_+:={zin mathbb C:{rm Im} z>0}$ and $widetilde zin mathbb C_+cup mathbb R$. In this paper, we prove a sharp bound for the local law of the generalized resolvent $G$ for $Wgg N^{3/4}$. This bound is a key input for the proof of delocalization and bulk universality of random band matrices in cite{PartI}. Our proof depends on a fluctuations averaging bound on certain averages of polynomials in the resolvent entries, which will be proved in cite{PartIII}.

تحميل البحث