Langevin equation in complex media and anomalous diffusion


الملخص بالإنكليزية

The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can be also somewhat alternative to each other, e.g., Continuous Time Random Walk (CTRW) and Fractional Brownian Motion (FBM). To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modeling of velocity dynamics. The complexity of the medium is parameterized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particles dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.

تحميل البحث