In this work we have studied the collisional energy loss of a heavy quark propagating through a high temperature QCD plasma consisting of both heavy and light quarks to leading logarithmic order in the Quantum Chromodynamics (QCD) coupling constant. The formalism adopted in this work shows a significant enhancement for the charm quark energy loss when the bath particles are also considered to be heavy in addition to light quarks. We know the running coupling constant is dependent on the momentum of the particles and the temperature of the system. Therefore, we have presented a comparison of the energy loss of the charm quark due to scattering with another heavy quark with constant and running coupling constant for different temperatures. The results show a substantial increase of the energy loss when compared to the fixed coupling case.