Observation of second-order topological insulators in sonic crystals


الملخص بالإنكليزية

Topological insulators with unique gapless edge states have revolutionized the understanding of electronic properties in solid materials. These gapless edge states are dictated by the topological invariants associated with the quantization of generalized Berry phases of the bulk energy bands through the bulk-edge correspondence, a paradigm that can also be extended to acoustic and photonic systems. Recently, high-order topological insulators (HOTIs) are proposed and observed, where the bulk topological invariants result in gapped edge states and in-gap corner or hinge states, going beyond the conventional bulk-edge correspondence. However, the existing studies on HOTIs are restricted to tight-binding models which cannot describe the energy bands of conventional sonic/photonic crystals that are due to multiple Bragg scatterings. Here, we report theoretical prediction and experimental observation of acoustic second-order topological insulators (SOTI) in two-dimensional (2D) sonic crystals (SCs) beyond the tight-binding picture. We observe gapped edge states and degenerate in-gap corner states which manifest bulk-edge correspondence in a hierarchy of dimensions. Moreover, topological transitions in both the bulk and edge states can be realized by tuning the angle of the meta-atoms in each unit-cell, leading to various conversion among bulk, edge and corner states. The emergent properties of the acoustic SOTIs open up a new route for topological designs of robust localized acoustic modes as well as topological transfer of acoustic energy between 2D, 1D and 0D modes.

تحميل البحث