We describe the magnetohydrodynamics (MHD) code CRONOS, which has been used in astrophysics and space physics studies in recent years. CRONOS has been designed to be easily adaptable to the problem at hand, where the user can expand or exchange core modules or add new functionality to the code. This modularity comes about through its implementation using a C++ class structure. The core components of the code include solvers for both hydrodynamical (HD) and MHD problems. These problems are solved on different rectangular grids, which currently support Cartesian, spherical, and cylindrical coordinates. CRONOS uses a finite-volume description with different approximate Riemann solvers that can be chosen at runtime. Here, we describe the implementation of the code with a view toward its ongoing development. We illustrate the codes potential through several (M)HD test problems and some astrophysical applications.