Manipulate Elastic Wave Modes by an Ultrathin Three-component Elastic Metasurface


الملخص بالإنكليزية

We design a two-dimensional ultra-thin elastic metasurface consisting of steel cores coated with elliptical rubbers embedded in epoxy matrix, capable of manipulating bulk elastic wave modes for reflected waves. The energy exchanges between the longitudinal and transverse modes are completely controlled by the inclined angle of rubber. One elastic mode can totally convert into another by the ultra-thin elastic metasurface. The conversion mechanism based on the non-degenerate dipolar resonance is a general method and easily extended to three-dimensional or mechanical systems. A mass-spring model is proposed and well describe the conversion properties. We further demonstrate that high conversion rates (more than 95%) can be achieved steadily for one elastic metasurface working on almost all different solid backgrounds. It will bring wide potential applications in elastic devices.

تحميل البحث