Multiparameter estimation, which aims to simultaneously determine multiple parameters in the same measurement procedure, attracts extensive interests in measurement science and technologies. Here, we propose a multimode many-body quantum interferometry for simultaneously estimating linear and quadratic Zeeman coefficients via an ensemble of spinor atoms. Different from the scheme with individual atoms, by using an $N$-atom multimode GHZ state, the measurement precisions of the two parameters can simultaneously attain the Heisenberg limit, and they respectively depend on the hyperfine spin number $F$ in the form of $Delta p propto 1/(FN)$ and $Delta q propto 1/(F^2N)$. Moreover, the simultaneous estimation can provide better precision than the individual estimation. Further, by taking a three-mode interferometry with Bose condensed spin-1 atoms for an example, we show how to perform the simultaneous estimation of $p$ and $q$. Our scheme provides a novel paradigm for implementing multiparameter estimation with multimode quantum correlated states.