Let $(R,mathfrak m)$ be an analytically unramified local ring of positive prime characteristic $p.$ For an ideal $I$, let $I^*$ denote its tight closure. We introduce the tight Hilbert function $H^*_I(n)=ell(R/(I^n)^*)$ and the corresponding tight Hilbert polynomial $P_I^*(n)$ where $I$ is an $mathfrak m$-primary ideal. It is proved that $F$-rationality can be detected by the vanishing of the first coefficient of $P_I^*(n).$ We find the tight Hilbert polynomial of certain parameter ideals in hypersurface rings and Stanley-Reisner rings of simplicial complexes.