Understanding how people interact with the web is key for a variety of applications, e.g., from the design of effective web pages to the definition of successful online marketing campaigns. Browsing behavior has been traditionally represented and studied by means of clickstreams, i.e., graphs whose vertices are web pages, and edges are the paths followed by users. Obtaining large and representative data to extract clickstreams is however challenging. The evolution of the web questions whether browsing behavior is changing and, by consequence, whether properties of clickstreams are changing. This paper presents a longitudinal study of clickstreams in from 2013 to 2016. We evaluate an anonymized dataset of HTTP traces captured in a large ISP, where thousands of households are connected. We first propose a methodology to identify actual URLs requested by users from the massive set of requests automatically fired by browsers when rendering web pages. Then, we characterize web usage patterns and clickstreams, taking into account both the temporal evolution and the impact of the device used to explore the web. Our analyses precisely quantify various aspects of clickstreams and uncover interesting patterns, such as the typical short paths followed by people while navigating the web, the fast increasing trend in browsing from mobile devices and the different roles of search engines and social networks in promoting content. Finally, we contribute a dataset of anonymized clickstreams to the community to foster new studies (anonymized clickstreams are available to the public at http://bigdata.polito.it/clickstream).