This paper investigates epidemic control behavioral synchronization for a class of complex networks resulting from spread of epidemic diseases via pinning feedback control strategy. Based on the quenched mean field theory, epidemic control synchronization models with inhibition of contact behavior is constructed, combining with the epidemic transmission system and the complex dynamical network carrying extra controllers. By the properties of convex functions and Gerschgorin theorem, the epidemic threshold of the model is obtained, and the global stability of disease-free equilibrium is analyzed. For individuals infected situation, when epidemic spreads, two types of feedback control strategies depended on the diseases information are designed: the one only adds controllers to infected individuals, the other adds controllers both to infected and susceptible ones. And by using Lyapunov stability theory, under designed controllers, some criteria that guarantee epidemic control synchronization system achieving behavior synchronization are also derived. Several numerical simulations are performed to show the effectiveness of our theoretical results. As far as we know, this is the first work to address the controlling behavioral synchronization induced by epidemic spreading under the pinning feedback mechanism. It is hopeful that we may have more deeper insight into the essence between diseases spreading and collective behavior controlling in complex dynamical networks.