Photoreceptors in the retina are coupled by electrical synapses called gap junctions. It has long been established that gap junctions increase the signal-to-noise ratio of photoreceptors. Inspired by electrically coupled photoreceptors, we introduced a simple filter, the PR-filter, with only one variable. On BSD68 dataset, PR-filter showed outstanding performance in SSIM during blind denoising tasks. It also significantly improved the performance of state-of-the-art convolutional neural network blind denosing on non-Gaussian noise. The performance of keeping more details might be attributed to small receptive field of the photoreceptors.