Cross-dataset Person Re-Identification Using Similarity Preserved Generative Adversarial Networks


الملخص بالإنكليزية

Person re-identification (Re-ID) aims to match the image frames which contain the same person in the surveillance videos. Most of the Re-ID algorithms conduct supervised training in some small labeled datasets, so directly deploying these trained models to the real-world large camera networks may lead to a poor performance due to underfitting. The significant difference between the source training dataset and the target testing dataset makes it challenging to incrementally optimize the model. To address this challenge, we propose a novel solution by transforming the unlabeled images in the target domain to fit the original classifier by using our proposed similarity preserved generative adversarial networks model, SimPGAN. Specifically, SimPGAN adopts the generative adversarial networks with the cycle consistency constraint to transform the unlabeled images in the target domain to the style of the source domain. Meanwhile, SimPGAN uses the similarity consistency loss, which is measured by a siamese deep convolutional neural network, to preserve the similarity of the transformed images of the same person. Comprehensive experiments based on multiple real surveillance datasets are conducted, and the results show that our algorithm is better than the state-of-the-art cross-dataset unsupervised person Re-ID algorithms.

تحميل البحث