Initial Growth Of Tin On Niobium For Vapor Diffusion Coating Of Nb3sn


الملخص بالإنكليزية

Nb3Sn has the potential to achieve superior performance in terms of quality factor, accelerating gradient and operating temperature (4.2 K vs 2 K) resulting in significant reduction in both capital and operating costs compared to traditional niobium SRF accelerator cavities. Tin vapor diffusion coating of Nb3Sn on niobium appears to be a simple, yet most efficient technique so far to fabricate such cavities. Here, cavity interior surface coatings are obtained by a two step process: nucleation followed by deposition. The first step is normally accomplished with Sn/SnCl2 at a constant low temperature (500 {deg}C) for several hours. To elucidate the role of this step, we systematically studied the niobium surface nucleated under varying process conditions. The surfaces obtained in typical tin/tin chloride processes were characterized using SEM/EDS, AFM, XPS, SAM and TEM. Examination of the surfaces nucleated under the standard conditions revealed not only tin particles, but also tin film on the surfaces resembling the surface obtained by Stranski-Krastanov growth mode. All the nucleation attempted with SnCl2 yielded better uniformity of Nb3Sn coating compared to coating obtained without nucleation, which often included random patchy regions with irregular grain structure. Even though the variation of nucleation parameters was able to produce different surfaces following nucleation, no evidence was found for any significant impact on the final coating.

تحميل البحث