Strong and Tunable Spin Lifetime Anisotropy in Dual-Gated Bilayer Graphene


الملخص بالإنكليزية

We report the discovery of a strong and tunable spin lifetime anisotropy with excellent spin lifetimes up to 7.8 ns in dual-gated bilayer graphene. Remarkably, this realizes the manipulation of spins in graphene by electrically-controlled spin-orbit fields, which is unexpected due to graphenes weak intrinsic spin-orbit coupling. We utilize both the in-plane magnetic field Hanle precession and oblique Hanle precession measurements to directly compare the lifetimes of out-of-plane vs. in-plane spins. We find that near the charge neutrality point, the application of a perpendicular electric field opens a band gap and generates an out-of-plane spin-orbit field that stabilizes out-of-plane spins against spin relaxation, leading to a large spin lifetime anisotropy. This intriguing behavior occurs because of the unique spin-valley coupled band structure of bilayer graphene. Our results demonstrate the potential for highly tunable spintronic devices based on dual-gated 2D materials.

تحميل البحث