Implicit regularization and solution uniqueness in over-parameterized matrix sensing


الملخص بالإنكليزية

We consider whether algorithmic choices in over-parameterized linear matrix factorization introduce implicit regularization. We focus on noiseless matrix sensing over rank-$r$ positive semi-definite (PSD) matrices in $mathbb{R}^{n times n}$, with a sensing mechanism that satisfies restricted isometry properties (RIP). The algorithm we study is emph{factored gradient descent}, where we model the low-rankness and PSD constraints with the factorization $UU^top$, for $U in mathbb{R}^{n times r}$. Surprisingly, recent work argues that the choice of $r leq n$ is not pivotal: even setting $U in mathbb{R}^{n times n}$ is sufficient for factored gradient descent to find the rank-$r$ solution, which suggests that operating over the factors leads to an implicit regularization. In this contribution, we provide a different perspective to the problem of implicit regularization. We show that under certain conditions, the PSD constraint by itself is sufficient to lead to a unique rank-$r$ matrix recovery, without implicit or explicit low-rank regularization. emph{I.e.}, under assumptions, the set of PSD matrices, that are consistent with the observed data, is a singleton, regardless of the algorithm used.

تحميل البحث