We study the evolution of interacting groups of agents in two-dimensional geometries. We introduce a microscopic stochastic model that includes floor fields modeling the global flow of individual groups as well as local interaction rules. From this microscopic model we derive an analytically-tractable system of conservation laws that governs the evolution of the macroscopic densities. Numerical simulations show good agreement between the system of conservation laws and the microscopic model, though the latter is slightly more diffusive. We conclude by deriving second-order corrections to the system of conservation laws.