A first-principles global multiphase equation of state for hydrogen


الملخص بالإنكليزية

We present and discuss a wide-range hydrogen equation of state model based on a consistent set of ab initio simulations including quantum protons and electrons. Both the process of constructing this model and its predictions are discussed in detail. The cornerstones of this work are the specification of simple physically motivated free energy models, a general multiparameter/multiderivative fitting method, and the use of the most accurate simulation methods to date. The resulting equation of state aims for a global range of validity ($T = 1-10^9 K$ and $V_m = 10^{-9}-1 m^3/mol$), as the models are specifically constructed to reproduce exact thermodynamic and mechanical limits. Our model is for the most part analytic or semianalytic and is thermodynamically consistent by construction; the problem of interpolating between distinctly different models -often a cause for thermodynamic inconsistencies and spurious discontinuities- is avoided entirely.

تحميل البحث