The Greens function method which has been originally proposed for linear systems has several extensions to the case of nonlinear equations. A recent extension has been proposed to deal with certain applications in quantum field theory. The general solution of second order nonlinear differential equations is represented in terms of a so-called short time expansion. The first term of the expansion has been shown to be an efficient approximation of the solution for small values of the state variable. The proceeding terms contribute to the error correction. This paper is devoted to extension of the short time expansion solution to non-linearities depending on the first derivative of the unknown function. Under a proper assumption on the nonlinear term, a general representation for Greens function is derived. It is also shown how the knowledge of nonlinear Greens function can be used to study the spectrum of the nonlinear operator. Particular cases and their numerical analysis support the advantage of the method. The technique we discuss grants to obtain a closed form analytic solution for non-homogeneous non-linear PDEs so far amenable just to numerical solutions. This opens up the possibility of several applications in physics and engineering.