We present theoretical results for the optical conductivity and the non-resonant Raman susceptibilities for three principal polarization geometries relevant to the square lattice. The susceptibilities are obtained using the recently developed extremely correlated Fermi liquid theory for the two-dimensional t-t-J model, where t and t are the nearest and second neighbor hopping. Our results are sensitively depending on t, t. By studying this quartet of related dynamical susceptibilities, and their dependence on t, t, doping and temperature, we provide a useful framework for interpreting and planning future Raman experiments on the strongly correlated matter.