Spectral signatures of fractionalization in the frustrated Heisenberg model on the square lattice


الملخص بالإنكليزية

We employ a variational Monte Carlo approach to efficiently obtain the dynamical structure factor for the spin-1/2 $J_1-J_2$ Heisenberg model on the square lattice. Upon increasing the frustrating ratio $J_2/J_1$, the ground state undergoes a continuous transition from a Neel antiferromagnet to a $mathbb{Z}_{2}$ gapless spin liquid. We identify the characteristic spectral features in both phases and highlight the existence of a broad continuum of excitations in the proximity of the spin-liquid phase. The magnon branch, which dominates the spectrum of the unfrustrated Heisenberg model, gradually loses its spectral weight, thus releasing nearly-deconfined spinons, whose signatures are visible even in the magnetically ordered state. Our results show how free spinons emerge across a quantum critical point, providing evidence for the fractionalization of magnons into deconfined spinons.

تحميل البحث