Rayleigh scattering of twisted light by hydrogenlike ions


الملخص بالإنكليزية

The elastic Rayleigh scattering of twisted light and, in particular, the polarization (transfer) of the scattered photons have been analyzed within the framework of second-order perturbation theory and Diracs relativistic equation. Special attention was paid hereby to the scattering on three different atomic targets: single atoms, a mesoscopic (small) target, and a macroscopic (large) target, which are all centered with regard to the beam axis. Detailed calculations of the polarization Stokes parameters were performed for C^{5+} ions and for twisted Bessel beams. It is shown that the polarization of scattered photons is sensitive to the size of an atomic target and to the helicity, the opening angle, and the projection of the total angular momentum of the incident Bessel beam. These computations indicate more that the Stokes parameters of the (Rayleigh) scattered twisted light may significantly differ from their behaviour for an incident plane-wave radiation.

تحميل البحث